Exercise 43

Prove that $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$.

Solution

According to Definition 4 and Definition 7, proving this infinite limit is logically equivalent to proving that

$$
\text { if } 0<x<0+\delta \quad \text { then } \quad \ln x<N \text {, }
$$

where N is any negative number. Start by working backwards, looking for a number δ that's greater than x.

$$
\begin{gathered}
\ln x<N \\
e^{\ln x}<e^{N} \\
x<e^{N}
\end{gathered}
$$

Choose $\delta=e^{N}$. The hypothesis then becomes

$$
\begin{gathered}
0<x<0+\delta \\
x<\delta \\
x<e^{N} \\
\ln x<\ln e^{N} \\
\ln x<N \ln e \\
\ln x<N .
\end{gathered}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty
$$

